skip to main content


Search for: All records

Creators/Authors contains: "Walker, Joseph F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background and Aims

    Transcriptome sequencing is a cost-effective approach that allows researchers to study a broad range of questions. However, to preserve RNA for transcriptome sequencing, tissue is often kept in special conditions, such as immediate ultracold freezing. Here, we demonstrate that RNA can be obtained from 6-month-old, field-collected samples stored in silica gel at room temperature. Using these transcriptomes, we explore the evolutionary relationships of the genus Pitcairnia (Bromeliaceae) in the Dominican Republic and infer barriers to gene flow.

    Methods

    We extracted RNA from silica-dried leaf tissue from 19 Pitcairnia individuals collected across the Dominican Republic. We used a series of macro- and micro-evolutionary approaches to examine the relationships and patterns of gene flow among individuals.

    Key Results

    We produced high-quality transcriptomes from silica-dried material and demonstrated that evolutionary relationships on the island match geography more closely than species delimitation methods. A population genetic examination indicates that a combination of ecological and geographical features presents barriers to gene flow in Pitcairnia.

    Conclusions

    Transcriptomes can be obtained from silica-preserved tissue. The genetic diversity among Pitcairnia populations does not warrant classification as separate species, but the Dominican Republic contains several barriers to gene flow, notably the Cordillera Central mountain range.

     
    more » « less
  2. Chloroplasts and mitochondria each contain their own genomes, which have historically been and continue to be important sources of information for inferring the phylogenetic relationships among land plants. The organelles are predominantly inherited from the same parent, and therefore should exhibit phylogenetic concordance. In this study, we examine the mitochondrion and chloroplast genomes of 226 land plants to infer the degree of similarity between the organelles’ evolutionary histories. Our results show largely concordant topologies are inferred between the organelles, aside from four well-supported conflicting relationships that warrant further investigation. Despite broad patterns of topological concordance, our findings suggest that the chloroplast and mitochondrial genomes evolved with significant differences in molecular evolution. The differences result in the genes from the chloroplast and the mitochondrion preferentially clustering with other genes from their respective organelles by a program that automates selection of evolutionary model partitions for sequence alignments. Further investigation showed that changes in compositional heterogeneity are not always uniform across divergences in the land plant tree of life. These results indicate that although the chloroplast and mitochondrial genomes have coexisted for over 1 billion years, phylogenetically, they are still evolving sufficiently independently to warrant separate models of evolution. As genome sequencing becomes more accessible, research into these organelles’ evolution will continue revealing insight into the ancient cellular events that shaped not only their history, but the history of plants as a whole. 
    more » « less
  3. Townsend, Jeffrey (Ed.)
    Abstract Dissecting the relationship between gene function and substitution rates is key to understanding genome-wide patterns of molecular evolution. Biochemical pathways provide powerful systems for investigating this relationship because the functional role of each gene is often well characterized. Here, we investigate the evolution of the flavonoid pigment pathway in the colorful Petunieae clade of the tomato family (Solanaceae). This pathway is broadly conserved in plants, both in terms of its structural elements and its MYB, basic helix–loop–helix, and WD40 transcriptional regulators, and its function has been extensively studied, particularly in model species of petunia. We built a phylotranscriptomic data set for 69 species of Petunieae to infer patterns of molecular evolution across pathway genes and across lineages. We found that transcription factors exhibit faster rates of molecular evolution (dN/dS) than their targets, with the highly specialized MYB genes evolving fastest. Using the largest comparative data set to date, we recovered little support for the hypothesis that upstream enzymes evolve slower than those occupying more downstream positions, although expression levels do predict molecular evolutionary rates. Although shifts in floral pigmentation were only weakly related to changes affecting coding regions, we found a strong relationship with the presence/absence patterns of MYB transcripts. Intensely pigmented species express all three main MYB anthocyanin activators in petals, whereas pale or white species express few or none. Our findings reinforce the notion that pathway regulators have a dynamic history, involving higher rates of molecular evolution than structural components, along with frequent changes in expression during color transitions. 
    more » « less
  4. Abstract Summary

    The ease with which phylogenomic data can be generated has drastically escalated the computational burden for even routine phylogenetic investigations. To address this, we present phyx: a collection of programs written in C ++ to explore, manipulate, analyze and simulate phylogenetic objects (alignments, trees and MCMC logs). Modelled after Unix/GNU/Linux command line tools, individual programs perform a single task and operate on standard I/O streams that can be piped to quickly and easily form complex analytical pipelines. Because of the stream-centric paradigm, memory requirements are minimized (often only a single tree or sequence in memory at any instance), and hence phyx is capable of efficiently processing very large datasets.

    Availability and Implementation

    phyx runs on POSIX-compliant operating systems. Source code, installation instructions, documentation and example files are freely available under the GNU General Public License at https://github.com/FePhyFoFum/phyx

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Premise

    Large genomic data sets offer the promise of resolving historically recalcitrant species relationships. However, different methodologies can yield conflicting results, especially when clades have experienced ancient, rapid diversification. Here, we analyzed the ancient radiation of Ericales and explored sources of uncertainty related to species tree inference, conflicting gene tree signal, and the inferred placement of gene and genome duplications.

    Methods

    We used a hierarchical clustering approach, with tree‐based homology and orthology detection, to generate six filtered phylogenomic matrices consisting of data from 97 transcriptomes and genomes. Support for species relationships was inferred from multiple lines of evidence including shared gene duplications, gene tree conflict, gene‐wise edge‐based analyses, concatenation, and coalescent‐based methods, and is summarized in a consensus framework.

    Results

    Our consensus approach supported a topology largely concordant with previous studies, but suggests that the data are not capable of resolving several ancient relationships because of lack of informative characters, sensitivity to methodology, and extensive gene tree conflict correlated with paleopolyploidy. We found evidence of a whole‐genome duplication before the radiation of all or most ericalean families, and demonstrate that tree topology and heterogeneous evolutionary rates affect the inferred placement of genome duplications.

    Conclusions

    We provide several hypotheses regarding the history of Ericales, and confidently resolve most nodes, but demonstrate that a series of ancient divergences are unresolvable with these data. Whether paleopolyploidy is a major source of the observed phylogenetic conflict warrants further investigation.

     
    more » « less